K-Si (Potassium-Silicon) System

James Sangster

Equilibrium Diagram

No original K-Si phase diagram is available. Information on this system was reviewed by [2001Bor].

The solubility of K in solid Si was measured from the point of view of semiconductor doping [1967Svo] in the range 550-1100 °C. The K diffused into the Si either by direct contact with liquid K or from K obtained by the electrolysis of KI. The analytical method was flame emission photometry. Single crystal *p*-type Si with a resistivity of 100 Ω cm was used. The authors claim that boron was the only impurity. The Li content of the K was below detection limits. Table 1 presents the results. The existence of compounds was not mentioned in this work [1967Svo].

The solubility of Si in liquid K was investigated by contacting the two metals for 1 h at 600-650 °C, followed by analysis by spectroscopy [1982Ale]. It was concluded that Si was "insoluble" in liquid K (the limit of detection was not stated).

KSi was prepared by heating the elements in a corundum crucible in a sealed steel bomb to 650 °C [1948Hoh, 1961Bus, 1961Sch]. It was characterized by x-ray diffraction (XRD) on powder [1948Hoh] and single-crystal samples [1961Bius, 1961Sch]. KSi is unstable to heat, losing K; upon heating in vacuo, nonstoichiometric com-

Temperature, °C	Atoms, cm ⁻³	Atom fraction of K(a)
550	7.0×10^{17}	1.4×10^{-5}
600	1.2×10^{18}	2.4×10^{-5}
650	1.6×10^{18}	3.2×10^{-5}
700	2.5×10^{18}	5.0×10^{-5}
750	3.4×10^{18}	6.8×10^{-5}
900	5.5×10^{18}	1.1×10^{-4}
1100	7.6×10^{18}	1.5×10^{-4}
(a) Assuming density of [1967Svo]	of solid Si = 2.32 g c	m^{-3}

pounds corresponding to KSi_8 [1948Hoh] or KSi_6 [1961Sch] were obtained at temperatures up to ~500 °C. That these were new species was established from their powder diffractograms [1948Hoh, 1961Sch].

Like NaSi, KSi may be partially decomposed by heating under Ar to yield K_7Si_{46} [1970Cro], which was characterized by XRD [1970Cro]. A similar compound K_8Si_{46} was prepared by reaction of K vapor with solid Si under a low pressure Ar atmosphere at 600-700 °C [1967Gal, 1969Gal]. As described in the next section, K_8Si_{46} and K_7Si_{46} belong to the same series of nonstoichiometric compounds of special common structure; it is possible, therefore, that KSi_6 and KSi_8 , obtained earlier [1948Hoh, 1961Sch], were mixtures of compounds K_xSi_{46} (x = 7, 8).

 $K_{12}Si_{17}$ was prepared by direct combination of the elements at 900 °C in sealed Nb containers jacketed in evacuated ampules of fused silica. It was characterized by single-crystal XRD [1998Sch].

Crystal Structures and Lattice Parameters

Crystal structures and lattice parameters are presented in Tables 2 and 3.

KSi, with 32 molecules per unit cell, contains isolated Si₄ tetrahedra surrounded by K atoms. Each K atom has four Si₄ groups associated with it, arranged tetrahedrally [1961Bus]. These Si₄ tetrahedra are similar to Sn₄, Ge₄, and Pb₄ groups also found in intermetallic compounds with alkali metals [1985Sch]. For this reason KSi is sometimes written as K₄Si₄.The compound identified as KSi₆ was indicated by powder XRD to have a cubic structure [1948Hoh].

The compounds K_7Si_{46} and K_8Si_{46} both belong to a series of cage or clathrate structures, strictly analogous to the well-known gas or liquid hydrates, such as $8Cl_2 \cdot 46H_2O$ [1970Cro]. The K compounds are analogous to the Na compounds Na_xSi_{46} , in which the Si atoms form cages for the guest metal atoms. In K_8Si_{46} , all the cages are occupied by metal atoms, but in K_7Si_{46} there is incomplete occupation.

Phase	Composition, at.% Si	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
К	0	cI2	Im3m	A2	W	[King1]
KSi	50.0	<i>cP</i> 64	P43n		GeK	[1961Sch]
KSi(a)	50.0	<i>tI</i> 64	I4 ₁ /acd		NaPb	[1984Eve]
K12Si17	58.6		$P2_1/c$			[1998Que]
K ₇ Si ₄₆	85.2		Pm3n		K ₇ Si ₄₆	[1969Gal]
K ₈ Si ₄₆	86.8	<i>cP</i> 54	Pm3n		K ₈ Si ₄₆	[1967Gal]
						[1969Gal]
Si	100	cF8	Fd3m	A4	C (diamond)	[King1]
(a) at 4 GPa	a					

		La	Lattice parameter, nm	n			
Phase	Composition, at.% Si	a	b	с	β	Reference	
К	0	0.5321				[King1]	
KSi	50.0	1.262				[1961Bus, 1961Sch]	
KSi(a)	50.0	1.057		1.710		[1984Eve]	
K ₁₂ Si ₁₇	58.6	2.571	1.4770	4.819	91.64°	[1998Que]	
K ₈ Si ₄₆	85.2	1.030				[1967Gal, 1969Gal]	
K ₇ Si ₄₆	86.8	1.026				[1970Cro]	
Si	100	0.54306				[King1]	
(a) at 4 GPa							

 Table 3
 K-Si lattice parameter data

The clathrate structure may be described as a tetrahedral network of pentagonal dodecahedra combined with 14-face polyhedra [1967Gal, 1969Gal].

 $K_{12}Si_{17}$ is monoclinic overall with a large unit cell (Z = 16). This compound contains the cluster Si_9^{4-} [1998Sch] and may be written ($K_4Si_9 + 2K_4Si_4$) [1998Que]. Experimental Raman spectra due to Si_9^{4-} clusters were verified by quantum chemical calculations [1998Sch].

Pressure

KSi was prepared by direct reaction of the elements at 4 GPa and 600-700 °C in boron nitride crucibles with a Belttype apparatus [1984Eve]. After quenching to ambient temperature, XRD on powder samples was taken. The highpressure form of KSi is tetragonal of the NaPb type.

References

- **1948Hoh**: E. Hohmann, Silicides and Germanides of the Alkali Metals, *Z. Anorg. Chem.*, 1948, **257**(1-3), p 113-126, in German (Equi Diagram; Crys Structure; Experimental)
- **1961Bus:** E. Busmann, The Crystal Structures of KSi, RbSi, CsSi, KGe, RbGe and CsGe, Z. Anorg. Allg. Chem., 1961, **313**(1-2), p 90-106, in German (EquiDiagram; Crys Structure; Experimental)
- **1961Sch**: R. Schäfer and W. Klemm, Further Notes on the Silicides and Germanides of the Alkali Metals, *Z. Anorg. Allg. Chem.*, 1961, **312**(3-4), p 214-220, in German (Equi Diagram; Crys Structure; Experimental)
- 1967Gal: J. Gallmeier, H. Schäfer, and A Weiss, K₈Si₄₆, a Silicide with a Cage Structure, Z. Naturforsch. B., 1967, 22(10), p 1080, in German (Equi Diagram; Crys Structure; Experimental)
- **1967Svo:** L. Svob, Solubility and Diffusion Coefficient of Na and K in Si, *Solid-State Electronics*, 1967, **10**(10), p 991-996 (Equi Diagram; Experimental)

- **1969Gal:** J. Gallmeier, H. Schäfer, and A. Weiss, Cage Structure as a Common Building Principle of Compounds K_8E_{46} (E = Si, Ge, Sn), *Z. Naturforsch. B.*, 1969, **24**(6), p 665-667, in German (Equi Diagram; Crys Structure; Experimental)
- **1970Cro:** C. Cros, M. Pouchard, and P. Hagenmuller, A New Family of Inorganic Clathrates Isostructural with Gas and Liquid Hydrates, *J. Solid-State Chem.*, 1970, **2**(4), p 570-581, in French (Equi Diagram; Crys Structure; Experimental)
- 1982Ale: B.N. Aleksandrov and N.V. Dalakova, Solubility of Various Metals in Solid Sodium and Potassium, *Izv. Akad. Nauk SSSR Metally*, 1982, 1, 133-140 (in Russian); TR, *Russ. Metall.*, 1982, 1, p 117-121 (Equi Diagram; Experimental)
- **1984Eve:** J. Evers, G. Oehlinger, G. Sextl, and A. Weiss, High-Pressure Phases of KSi, KGe, RbSi, RbGe, CsSi and CsGe with the NaPb-Type Structure, *Angew. Chem.*, 1984, **96**(7), p 512-513, in German; TR, *Angew. Chem. Int. Ed. Engl.*, 1984, **23**(7), p 528-529 (Equi Diagram; Crys Structure; Pressure; Experimental)
- **1985Sch:** H. Schäfer, On the Problem of Polar Intermetallic Compounds, *Ann. Rev. Mater. Sci.*, 1985, **15**, p 1-41 (Crys Structure; Review)
- **1998Que:** V. Quéneau, E. Todorov, and S.C. Sevov, Synthesis and Structure of Isolated Silicon Clusters of Nine Atoms, *J. Am. Chem. Soc.*, 1998, **120**(13), p 3263-3264 (Crys Structure; Experimental)
- 1998Sch: . G. von Schnering, M. Somer, M. Kaupp, W. Carrillo-Cabrera, M. Baitinger H.G. von Schnering, M. Somer, M. Kaupp, W. Carrillo-Cabrera, M. Baitinger, A. Schmeding, and Yu. Grin, The Cluster Anion Si₉⁴⁻, Angew. Chem., 1998, 110(17), p 2507-2509, in German; TR, Angew. Chem. Int. Ed. Engl., 1998, 37(17), p 2359-2361 (Crys Structure; Experimental; Calculation)
- 2001 Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series. 75. Nonmetals in liquid alkali metals, *J. Phys. Chem. Ref. Data*, 2001, 30(4), p 835-1158 (Equi Diagram; Review; #)

K-Si evaluation contributed by **J. Sangster**, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, Quebec, Canada, H3T 2A5. Literature searched through 2004.